Suberoylanilide hydroxamic acid (Zolinza/vorinostat) sensitizes TRAIL-resistant breast cancer cells orthotopically implanted in BALB/c nude mice.

نویسندگان

  • Sharmila Shankar
  • Rachel Davis
  • Karan P Singh
  • Razelle Kurzrock
  • Douglas D Ross
  • Rakesh K Srivastava
چکیده

The purpose of this study was to examine whether histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA; Zolinza/vorinostat) could sensitize tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant breast carcinoma in vivo. BALB/c nude mice were orthotopically implanted with TRAIL-resistant MDA-MB-468 cells and treated i.v. with SAHA, TRAIL, or SAHA followed by TRAIL for four times during first 3 weeks. The effects of drugs on tumor growth and markers of apoptosis, metastasis, and angiogenesis were examined. SAHA sensitized TRAIL-resistant xenografts to undergo apoptosis through multiple mechanisms. Whereas TRAIL alone was ineffective, SAHA inhibited growth of MDA-MB-468 xenografts in nude mice by inhibiting markers of tumor cell proliferation, angiogenesis, and metastasis and inducing cell cycle arrest and apoptosis. The sequential treatment of nude mice with SAHA followed by TRAIL was more effective in inhibiting tumor growth, angiogenesis, and metastasis and inducing apoptosis than SAHA alone, without overt toxicity. Treatment of nude mice with SAHA resulted in down-regulation of nuclear factor-kappaB and its gene products (cyclin D1, Bcl-2, Bcl-X(L), vascular endothelial growth factor, hypoxia-inducible factor-1alpha, interleukin-6, interleukin-8, matrix metalloproteinase-2, and matrix metalloproteinase-9) and up-regulation of DR4, DR5, Bak, Bax, Bim, Noxa, PUMA, p21(CIP1), tissue inhibitor of metalloproteinase-1, and tissue inhibitor of metalloproteinase-2 in tumor cells. Furthermore, control mice showing increased rate of tumor growth had increased numbers of CD31(+) or von Willebrand factor-positive blood vessels and increased circulating vascular endothelial growth factor receptor 2-positive endothelial cells compared with SAHA-treated or SAHA plus TRAIL-treated mice. In conclusion, sequential treatment with SAHA followed by TRAIL may target multiple pathways in tumor progression, angiogenesis, and metastasis and represents a novel therapeutic approach to treat breast cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suberoylanilide hydroxamic acid sensitizes human oral cancer cells to TRAIL-induced apoptosis through increase DR5 expression.

Suberoylanilide hydroxamic acid has been shown to selectively induce tumor apoptosis in cell cultures and animal models in several types of cancers and is about as a promising new class of chemotherapeutic agents. In addition, suberoylanilide hydroxamic acid showed synergistic anticancer activity with radiation, cisplatin, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in s...

متن کامل

MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo.

Histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) show promise for the treatment of cancers. The purpose of this study was to examine the molecular mechanisms by which HDAC inhibitor MS-275 sensitizes TRAIL-resistant breast cancer cells in vivo, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition (EMT). BAL...

متن کامل

Therapeutic Discovery MS-275 Sensitizes TRAIL-Resistant Breast Cancer Cells, Inhibits Angiogenesis and Metastasis, and Reverses Epithelial-Mesenchymal Transition In vivo

Histone deacetylase (HDAC) inhibitors and tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) show promise for the treatment of cancers. The purpose of this study was to examine the molecular mechanisms by which HDAC inhibitor MS-275 sensitizes TRAIL-resistant breast cancer cells in vivo, inhibits angiogenesis andmetastasis, and reverses epithelial-mesenchymal transition (EMT). BALB...

متن کامل

Apo2l/Tumor necrosis factor-related apoptosis-inducing ligand prevents breast cancer-induced bone destruction in a mouse model.

Breast cancer is the most common carcinoma that metastasizes to bone. To examine the efficacy of recombinant soluble Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) against breast cancer growth in bone, we established a mouse model in which MDA-MB-231 human breast cancer cells were transplanted directly into the marrow cavity of the tibiae of athymic nude mic...

متن کامل

Extrinsic pathway- and cathepsin-dependent induction of mitochondrial dysfunction are essential for synergistic flavopiridol and vorinostat lethality in breast cancer cells.

The present studies have determined whether interactions between the cyclin-dependent kinase inhibitor flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA; vorinostat; Zolinza) occur in breast cancer cells. MDA-MB-231 and MCF7 cells were treated with flavopiridol (25-100 nmol/L) and vorinostat (125-500 nmol/L) in vitro, and mechanisms of cell killing were de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2009